

What is Carbonation of Concrete

- ▶ It is a process of reacting calcium hydroxide in the concrete with carbon dioxide in the atmosphere and creating calcium carbonate and water.
- ► $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
- ► This process starts with the concrete surface and gradually moves towards the inner of the concrete. The carbonation of concrete is a slow and continuous process.
- ▶ When the carbonation front reaches the reinforcement, it could start the corrosion of steel.

How does Reinforcement Corrode

- ▶ The pH value of the concrete is lowered to about 9 during the carbonation reaction.
- ▶ The protective oxide layer around the reinforcement breaks at this level enabling the occurrence of corrosion of reinforcements.
- ▶ The reinforcement is protected by the alkaline condition caused by the hydrated cement paste. This is neutralized by the carbonation allowing the corrosion in the presence of oxygen and moisture.

Consequences of Corrosion

- ➤ Continuing this process will increase the volume around the reinforcement and then cracks will appear in the cover zone by further exposing the reinforcement to the environment.
- ▶ In addition, spalling could also occur due to this corrosion with the increase in the internal volume.
- ▶ This will affect the strength of the reinforcement leading to loss of its tensile strength.

How to Test Carbonation

- ▶ Depth of carbonation can be found very early with a simple test.
- ▶ Phenolphthalein solution having 1% phenolphthalein is sprayed in the newly exposed concrete.
- ▶ If the colour of the concrete change to pink, that area of the concrete is not carbonated.
- ▶ The area that did not change colour with the application of phenolphthalein is carbonated.
- ▶ There are other methods such as IR spectrum analysis of carbonated concrete. The CO₂ absorption by the specimen is measured in the method.

How to Calculate Carbonation Depth

- $t = (d/k)^2$
- ▶ t Time for carbonation, d Concrete cover, k Permeability of concrete
- ▶ Using this equation, we can find the time required to the carbonation front to reach the reinforcements.
- ▶ If we know the age of the building, we can check whether the reinforcements are affected by carbonation.

How to Avoid Carbonation

- ▶ Since the higher water-cement ratio contributes to the higher depth of carbonation, it could be controlled as possible.
- Adequate curing of concrete and extended curing period will help concrete to react well, and it reduces the cracking of concrete.
- Adequate curing reduces the permeability of concrete and as a result rate of carbonation will reduce.
- ▶ Use of admixtures to modify the pore structure and reduce the permeability of concrete.
- Additives like silica fume having a higher surface area could be used to reduce the porosity of concrete.
- ▶ The use of protective coatings will improve the durability of concrete and low down the carbonation process.
- ▶ It has been proven that self-compacting concrete has better performance against the carbonation of concrete.

How to Repair the Concrete

- ▶ Clean the affected area properly and remove all loose concrete.
- ➤ Clean the reinforcements.
- ▶ This could be done manually with a wire brush or a suitable chemical could be applied to remove the rust.
- ▶ If reinforcements are damaged in a way that they can not carry the tensile forces, reinforcements should be replaced.
- ▶ Apply anticorrosive for reinforcements.
- Apply a bonding agent to the concrete surface for better bonding.
- Apply a suitable mortar. This could be non-shrink concrete or any applicable mortar mix approved by the structural engineer.

